
Stochastic modeling 

A few ways to introduce stochasticity: 

• Add noise to the duration of events 

• Replace reaction rates with reaction probabilities 

• Replace deterministic transfer functions with noisy transfer functions  

• Add noise to the outcomes 

 



Stochasticity in Boolean models 

1. Noise in timescales – implemented using 

randomness in update orders (seen before) 

 

2. Noisy transfer functions 

 

3. Probabilistic Boolean network: each node 

makes a probabilistic choice among several 

transfer functions. 

 

A probabilistic Boolean network 

represents a stochastic weighted  

average of multiple Boolean networks.    

Noisy OR 



Bayesian network modeling 

• Probabilistic network modeling with relatively few parameters 

• Requires large amounts of data, but can use heterogeneous data 

 

• The interactions modeled do not need to be direct 

• The basic Bayesian models cannot incorporate feedbacks and 
dynamics 

• Most Bayesian models are discrete, e.g. they assume that the nodes 
can have one of two states (on, off) 

 

• Main concept: conditional probability, i.e. the probability of an event 
given that we know some other event has occurred 

• Bayesian network models are usually used  to find models that fit 
existing data 

 



An example of a Bayesian network model 

Needham et al Nature Biotechnology 2006 



Steps for creating a Bayesian network model 

• Summarize/guess the nodes (players). 

Summarize/guess the interactions/dependency 

relations, represent them as directed edges. No 

cycles (feedback loops) are allowed. 

• The state of each node is assumed to be 

determined entirely by its current inputs. 

• Assume that the nodes can have one of two states 

(on, off). 

• For each node construct a conditional probability 

table that gives the probability of the node’s states 

for each combination of states for the regulator 

nodes. 

• Select the state values of source nodes. Use the 

tables to determine the states of the sink (output) 

nodes. 

B A 

D C 

E 

0.88 1 1 

0.06 0 1 

0.08 1 0 

0.02 0 0 

A B P(C=1) 

0.9 1 

0.01 0 

B 

0.92 1 

0.03 0 

C 

P(D=1) 

P(E=1) 

Q: find similarities and differences between Boolean and Bayesian models. 

 



Conditional probability 

Joint probability of two variables V, W:  P(V=v, W=w). Here v, w are  

specific values. 

Conditional probability: P(V=v| W=w). Means the probability of V=v  

given that W=w. 

 

P(V=v,W=w) = P(W=w). P(V=v|W=w) = P(V=v). P(W=w|V=v) 

 

 

 

To calculate the probability of a node in a particular state we only need to  

know the states of the nodes in which it is conditioned. 
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Bayes’ Rule 



Determining probabilities 

P(V=v,W=w) = P(W=w). P(V=v|W=w) = P(V=v). P(W=w|V=v) 

 

The tables indicate conditional probabilities, e.g. 

P(C=1|A=0, B=0) = 0.02 

P(E=0|C=0) = 0.03 

 

Assume A=B=1.  

P(C=1|A=B=1) = 0.88 

P(D=1|A=B=1) = P(D=1|B=1) = 0.9 

P(E=1|A=B=1) = P(E=1, C=0|A=B=1) + P(E=1, C=1|A=B=1)  

=P(C=0|A=B=1)P(E=1|C=0) + P(C=1|A=B=1)P(E=1|C=1) 

=0.12*0.03+0.88*0.92 = 0.81 

 

Q: What is the closest Boolean model? What would it 

indicate for A=B=1? 
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Connection between conditional probabilities in 

Bayesian networks and Boolean truth tables 

Noisy Boolean transfer functions 

translate into conditional probabilities. 

The reverse is not true because Bayesian 

networks have more parameters. 

 

 

A parallel of Bayesian conditional  

probabilities is a probabilistic  

Boolean network in which each  

node makes a probabilistic choice  

among several transfer functions. 

 

 

Noisy OR 



Bayesian model building and analysis is 

mainly computational 

Implementations: Hugin (used in our textbook),  

Bayesian packages in R, Bayesian Network  

Toolbox for Matlab 

Hugin example input 

 

 

Forward calculation: 

TF1=on, TF2=off 

Reverse calculation 

(diagnostic): G=on 

The most likely scenario in which G=on is 

not the same as the TF1/TF2 combination that 

gives the highest probability for G=on. 

 

Q: why do you think this is so?  



Basic Bayesian networks are time-less, but feedback requires a time  

delay. 

Idea: incorporate feedback by creating a copy of the network 

 

 

 

 

 

 

We need fine-resolution time-course data to learn the conditional  

probabilities. 

Focused experiments, i.e. interventions, control are necessary to detect  

auto-regulatory feedback. 

 

 

Modeling networks with feedback with 

Dynamic Bayesian Networks 

inhibition 



Constructing Bayesian models directly from data 

• Each Bayesian network model needs two sets of parameters: the 

dependencies (network) and the values of the conditional dependency tables. 

 

• If the network is known, the dependency tables  

      can be inferred. If the network is not known, there is  

      a search in the space of networks and each  

      candidate network is evaluated after estimating its  

      optimum conditional probability values. 

 

• If for each node we have several measurements of  

      node output value for each combination of  

      input values, we can construct the conditional  

      probability tables based on these  

      measurements. 

• If there is no data for some input combinations, 

     we can assume equal probability of each output for those inputs and then 

iteratively change to better fit the data. 



Learning network structure from data 

Most approaches generate an ensemble of plausible networks 

The goodness score is defined based on Bayes’ theorem 

P(S|D) = P(D|S)P(S)/P(D) 

 

Estimate P(D|S):   

log P(D|S) = log P(D|S, CPT) – (K/2) log N 

CPT: estimated optimal probability tables,  

K: # free parameters, N: # data samples 

 

Maximize log P(D|S) over different networks. 

 

One link of each color is sufficient to explain the  

data on top. 

Edges that recur in many high-scoring networks 

are particularly plausible. 



Example: inferring signaling networks from single cell data 

correlation causation can be  

inferred from  

interventions 

CD4+ T cells, 11 proteins/lipids measured 

in different signaling and intervention cases. 

Sachs et al Science 308, 523 (2005) 



Current limitations of Bayesian networks 

• Efficient network evaluation is absolutely essential in Bayesian 

network modeling. 

 

• This is greatly facilitated by the two key assumptions of no feedback 

and no memory.  

 

• But these assumptions also limit the utility of Bayesian networks as 

models of regulatory networks. 

 

• A third limitation is the need of enough replicate data such that 

observation frequencies can be interpreted as conditional 

probabilities. 


