
Not all molecular interactions are  

simultaneously active 

Party hubs are inside 

connected modules that 

interact simultaneously.  

Date hubs connect different 

modules. 

Han et al,  Nature 443, 88 (2004) 

Condition-dependent  transcriptional 

sub-networks 

Luscombe et al,   

Nature 431, 308 (2004) 



A way of representing dynamics 

• Define the network so it encompasses all processes that can 

happen among the elements included in the network. 

 

• Only a subset of the processes are going on at any given 

instant. This is because only a subset of the nodes are on 

(present/active) at any given instant. 

 

• Rather than drawing, deleting and redrawing nodes and edges, 

we will keep them drawn, but remember that the status of the 

process represented by the edge depends on the status of the 

node(s) initiating/regulating the process. 

 

• So, the network is static, and it needs to be supplemented by 

equations describing the status of the nodes. 



Forward and reverse dynamic modeling 

Dynamic modeling of interaction network: 

Input: components; interactions; states of components 

Hypotheses: interaction network; transfer functions; parameters 

Output: behavior of components in time 

Validation: capture known behavior  

Explore: study cases that are not accessible experimentally 

   change parameters, change assumptions  

 

Reverse problem: Network inference from dynamic information: 

Input: components; states of components (in time) 

Hypotheses: regulatory framework 

Output: proposed regulatory network 

Validation: capture known interactions  

 

We will study network inference later in the course. 



Types of dynamic models 

1.  Continuous - similar to chemical kinetics 

            - differential equations 

2.  Discrete - assume a small set of qualitative states 

       - the changes in state are given by discrete (logical) rules 

 

1. Deterministic - no randomness is involved in the development of future 

                                  states of the system  

2. Stochastic -    non-deterministic in that the next state of is not fully 

                                 determined by the previous state.  

              -     can take into account the fluctuations in mRNA/protein  

                                 numbers and external noise 

 

Continuous and deterministic models: < medium-size networks,  

> medium node abundances. 

Stochastic models: small networks, low node abundances 

Discrete models: > medium networks, multimodal node abundances 

 



Example of continuous model: chemical kinetics  

Node status: concentration of the molecule 

Assumptions: conservation of mass + elementary reactions 

As many equations as many nodes, as many terms as many edges 

in the bipartite (molecule + reaction) network.   

d[A] /dt = - k [A] [B]  

d[B] /dt = - k [A] [B]  

d[C] /dt =  k [A] [B]  

d[D] /dt =  k [A] [B]  

Initial conditions 

[A](t=0) = [A]0 

[B](t=0) = [B]0 

[C](t=0) = [C]0 

[D](t=0) = [D]0 
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Differential equations 

Q. When does the reaction stop? 
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Another, flux- based look at the problem 

A + B → C + D   (1) 

A + D → E   (2) 

B + C → F   (3) 

Stoichiometric  

Matrix (S) 

Reaction Pathway 
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Vector of  

metabolite 

concentrations 

Vector of  

reaction  

fluxes 

In a steady state the fluxes balance 

each other and the concentrations are 

constant  
0Sv



Flux balance analysis 

• The number of reactions is much larger than the number of 

metabolites, so one cannot find a unique steady state. 

• Instead, use constraints  and optimization principles to find a 

feasible steady state 

• Constraints: bounds on fluxes or concentrations 

• Optimization: maximize the production of biomass (growth). 

 

 

Bernhard Palsson, Systems Biology: Properties of reconstructed networks 



Enzyme-catalyzed reactions  

Most reactions in biological systems would not take place at 

perceptible rates in the absence of enzymes. 

Enzymes are specialized proteins that bind specific reactants, 

get them close together, and by this, accelerate the reaction 

up to a million times. 

In this context, the reactants are called substrates. 

In enzyme-catalyzed reactions the rate of product synthesis 

 depends nonlinearly on the concentration of the substrate. 

 

 

 

 

. 

 



Ex. Draw two possible network representations of this process.  

Leonor Michaelis, Maud Menten (1913) 

 

1. A specific enzyme-substrate complex is a necessary 

     intermediate in catalysis 

2. This complex is in a quasi-steady state 

3. The step that yields the product is irreversible 

Michaelis-Menten model of enzymatic 

reactions  
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Michaelis-Menten kinetics (cont.)  

Goal: express the rate of product synthesis as a function of substrate 

    concentration 
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Ex. Draw the dependence of  the rate of product synthesis on the 

substrate concentration. Characterize three limits/points on the curve. 

 



Enzyme-catalyzed reactions  

KM is equal to the substrate concentration at which the reaction rate 

is half its maximal value. 

Limit 1  

 

k2ET is the number of substrate molecules converted in a unit time 

 when the enzyme is fully saturated with substrate. 

 

Limit 2 

 

The efficiency of an enzyme can be described by   MKk2
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Chemical kinetics-like models of cellular 

processes  

Assumption: cellular synthesis and degradation processes can be  

                     described as simple or enzyme-catalyzed reactions 

 

Ex.: receptor - ligand binding 

       methylation reactions – catalyzed by methylating enzymes,  

        phosphorylation  - catalyzed by kinases  

        dephosphorylation – spontaneous or catalyzed by phosphatases  

  protein synthesis –catalyzed by mRNA,  

  protein degradation – spontaneous or catalyzed 

 

J. Tyson, K. Chen, B. Novak, Curr. Opin. Cell Biology 15, 221 (2003)  



Protein synthesis and degradation  

Protein synthesis:   mRNA  protein  (sufficient supply of amino-acids) 

Protein degradation:  protein   

Notations in Tyson et al 2003: The source element (here the mRNA) is 

denoted S (for signal). One component (here the protein) is 

designated as the response. 

Network diagram:  

 

 

 

 

Q: Draw an alternative network, more in line with what we have seen  

before, where edges connect two nodes and signify regulation. 

Solid edge: mass flow 

Dashed edge: regulation 



Kinetics of protein synthesis and degradation  

Protein synthesis:   mRNA  protein  (sufficient supply of amino-acids) 

Protein degradation:  protein   

 

          Steady state:  
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synthesis 

degradation 

The points where the 

synthesis and  

degradation terms are 

equal indicate the 

steady states. 

This is the input- 

output characteristic 

of the system. 



Kinetics of phosphotransfer  

Phosphorylation:   protein  phospho-protein 

Dephosphorylation:  phospho-protein  protein 

The first reaction is catalyzed by a kinase, assume first –order kinetics  

 

     

Steady state:  
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Phosphotransfer  with Michaelis-Menten kinetics 

Assume that the phosphorylation and dephosphorylation reactions 

follow Michaelis-Menten kinetics  
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Steady state: 

 

 

G -  Goldbeter-Koshland function 
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