
Properties common to many large-scale networks, independently of 

their origin and function: 

 1. The degree and betweenness distribution are decreasing  

              functions, usually power-laws.  

 2. The distances scale logarithmically with the network size 

 

 

 3. The clustering coefficient does not seem to depend on the 

              network size 

 

 

As though all these networks were part of the same family/class. 

 

Network models – random graphs 
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The average distance and clustering coefficient only depend on the  

number of nodes and edges in the network. 

 

This suggests that general models based only on the number of 

nodes and edges in the network could be successful in describing 

the properties of an “expected” (characteristic) network. 

 

Uniformly random network: distributes the edges uniformly among 

nodes.  

Probabilistic interpretation:  

There exists a set (ensemble) of networks with given number of 

nodes and edges. Select a random member of this set. 

What are the expected properties of this network? – studied by 

random graph theory. 

Random networks 



Random graph theory 

Erdös-Rényi algorithm - Publ. Math. Debrecen 6, 290 (1959) 

• fixed node number N 

• connecting pairs of nodes 

with probability p 

Random graph theory studies the expected properties of graphs with  
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The properties of random graphs depend 

on p 
Properties studied:  

            is the graph connected? 

            does the graph contain a giant connected component? 

            what is the diameter of the graph? 

            does the graph contain cliques (complete subgraphs)? 

 

Probabilistic formulation: what is the probability that a graph with 

N nodes and connection probability p is connected?  

Increase p from 0 to 1. Some of these properties appear suddenly,  

at a threshold  pc 

 

 

 

 

 

 

Note that pc depends on N. 
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Critical thresholds for the emergence of 

certain subgraphs 

Assume that the connection probability is a power-law of N, 

Assume that z increases from         to 0  

Look for trees, cycles and cliques in the graph. 

 

 

Appearance thresholds: 
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Emergence thresholds for clusters in a 

random graph 

• For                the graph contains only isolated trees. 

• If                               the graph has isolated trees and cycles. 

• At                               a giant connected component appears. 

• The size of the giant connected component approaches N rapidly  

as c increases. 

 

 

 

 

 

• The graph is connected if  
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Node degrees in random graphs 

 

• average degree: 

• degree distribution:  
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Most of the nodes have approximately the same degree. 

The probability of very highly connected nodes is exponentially 

small. 
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ways to select k 

nodes from N-1 
 

probability of 

having k edges 

 
probability of  

missing N-1-k 

edges 



Distances in random graphs 

 

• nr. of first neighbors: 

• nr. of second neighbors:  

• estimate maximum distance: 
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Random graphs tend to have a tree-like topology with almost 

constant node degrees. 
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This scaling was proven by Chung and Lu,  Adv. Appl. Math 26, 

257 (2001). 



There is no local order in random graphs 

 

Since edges are independent and have the same probability p,  
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Clustering coefficient:  
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The clustering coefficient of random graphs is small. 
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Are real networks like random graphs? 

As quantitative data about real networks becomes available, we can 

compare their topology with that of random graphs.  

Starting measures: N, <k> for the real network. 

Determine l, C and P(k) for a random graph with the same N and <k>. 

 

 

 

 

 

 

Measure l, C and P(k) for the real network. Compare. 
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Path length and order in real networks  
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Real networks have short distances like random graphs but they 

are more transitive.  



The degree distribution of the WWW is a 

power-law 
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R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999) 

A. Broder et al., Comput. Netw. 33, 309 (1999) 



Power-law degree distributions were found in  

diverse networks 

Actor collaboration 
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A.-L. Barabási, R. Albert, Science 286, 509 (1999) 

R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000) 

Internet, router level 
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The power-law degree distribution 

indicates a heterogeneous topology  

The average degree gives 

 the characteristic scale (value)  

of the degree. 

Large variability, 

 the average degree not informative,  

 no characteristic scale for the degree  

 Scale-free  



Random graphs with  

a power-law degree distribution 

Fixed 
 
Network assembly - random edges, but enforcing the  right 
 

Configuration model:  

• choose a degree sequence N(k)=N P(k) 

• give the nodes  k “stubs” according to N(k) 

• connect stubs randomly  

 
M. E. J. Newman, S. H. Strogatz, and D. J. Watts,  

Phys. Rev. E 64, 026118 (2001) 

 

Ex. Construct a graph with 10 nodes and degree sequence 

N(1)=4, N(2)=3, N(3)=2, N(4)=1. 

What is a necessary condition for the graph construction? 
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Properties of scale-free random graphs 

Fixed 
 
The graph will have a giant connected component if 
 
Connected if  
 
The average path length scales approximately logarithmically 
with the number of nodes. 
 
The agreement with real networks’ path length is not better   
than ER random graphs’. 
 
The clustering coefficient depends weakly on N  and can 
even increase if   
 
In many applications scale-free random graphs are a better 
benchmark than ER random graphs. 
 
Are generative network models more successful than random 
graphs? 
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Properties common to many large-scale networks, independently of 

their origin and function: 

 1. The degree and betweenness distribution are decreasing  

              functions, usually power-laws.  

 2. The distances scale logarithmically with the network size 

 

 

 3. The clustering coefficient does not seem to depend on the 

              network size, and is larger than the clustering coefficient  of  

              comparable random graphs 

 

There are two model families proposed to explain these properties: 

Small world network models and scale-free network models. 

 

Network models 
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Benchmark: 1D lattice (ring) 
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The average path-length varies as  

Constant degree, constant clustering coefficient. 
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Watts-Strogatz model of small-world 

networks 

Watts-Strogatz model - D. Watts, S. Strogatz, Nature 393, 440 (1998)   

• lattice with K neighbors    

• rewire edges with  

  probability p 

,
K2

N
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Real networks resemble both regular lattices and random graphs –

perhaps they are in between. 
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Is there a regime with small l and large C? 



Transition from a lattice to a small world 

lattice         small world          random 

There is a broad interval of p over which                        but     )0()( CpC  )1()( lpl 



Degree distribution of a small-world 

network  

P(k) depends on the rewiring parameter p, but is 

always centered around <k>. 
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Rewiring does not change the average degree, but 

modifies the degree distribution. 

Degree distribution similar to that of a random graph, with 

exponentially small probability for very highly connected nodes. 



We need to uncover the mechanisms 

responsible for the scale-free P(k)  

• random graphs 

• small-world networks 

• scale-free random graphs 

Real networks continuously change 

Static (number of nodes fixed)  

• random graphs 

• small-world networks   
Homogeneous 

Scale-free degree distribution - the nodes are not equivalent 

We need to model the evolution of networks, not just their topology. 



 Barabasi-Albert model of scale-free 

networks 

• growth: a node and  m  edges added at every step 

• preferential attachment:    
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Price, J. Amer. Soc. Inform. Sci. 27, 292 (1976) 

Barabási and Albert, Science 286, 509 (2000) 

Start with a small seed of m0 nodes and m0(m0-1)/2 edges. 



 General properties of the network 

• nr. of nodes: 

• nr. of edges: 

 

• average degree: 

• degree distribution:

  

m2
N

E2
k 

tmN 0 

tm
2

)1m(m
E 00  




3

t
Ak)k(P 




Although the network grows, the degree distribution becomes 

stationary. 



Ex. 1 

Start from a seed of two nodes connected by an edge. At each step, 

add a new node, and connect it by a single edge to a preexisting 

node.  

 

Let the probability of selection be directly proportional with the 

degree of the “old” node. (Is there an easy way to do this?)  

 

Continue growing the graph until you reach 15 nodes. Describe the 

graph (average degree, degree distribution, 

clustering coefficient, connectivity, maximum distance). 

 

 

Ex. 2  

How will the properties of the graph change if at each step a new 

node and two new edges are added? 



Average distances smaller in the BA model than in equivalent random graphs. 
but not as small as in scale-free random graphs. 
 
 
Clustering coefficient decreases with network size. 
  

How do the other network measures 

compare with real networks? 

Average path length  Clustering coefficient  
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Cohen et al, in Handbooks of Graphs and Networks (2003) 



Evolving network models  

 

      

The scale-free model is only a minimal model and does not capture 

several features of real networks. 

 

Its basic mechanisms can be augmented by the incorporation of 

 addition of edges without new nodes  

             edge rewiring, removal  

             node removal 

 constraints or optimization principles 

 

A considerable variety of such evolving network models still lead to 

heterogeneous topologies, some with close agreement with real 

networks.  

 





A model with high clustering coefficient 

• Each node of the network can be either active or inactive. 

• There are only m active nodes in the network at any instance. 

1. Start with m active, completely connected nodes 

2. At each timestep add a new node (active) that connects to m 

active nodes. 

3. Deactivate one active node 

 

K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002) 
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Evolving protein interaction networks 

Genes and interactions among gene products have often been 

conserved through evolution (orthologs). 

 

We can consider the topology of protein interaction networks as a 

result of a network evolution process. 

 

One can formulate evolving network models for protein interaction 

networks. 

 

The driving forces behind the formation of edges are gene 

duplication (i.e. addition of nodes) and mutation (i.e. addition or 

removal of edges). 

  



Duplication-divergence models 

Edge loss with 
prob.  

Correlated connections (C): only the duplicated gene loses/ gains edge    

Uncorrelated connections (NC): edge can be added or removed between 

any pair of nodes in the network. 

Gene duplication 

Edge gain 

with prob.  

Pastor-Satorras et al., Journ. Theor. Biol 22, 199 (2003) 



Network properties 

Stationary solution possible if  > 0.5 
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Apart from a concave region γ is increasing 

function of δ. 

The clustering coefficient of a gene  

duplication model depends  

strongly on the initial seed network  

on which the duplication is performed 
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Good agreement with  yeast prot. int. 

network (of N=2000, <K> = 2.5) if 

=0.562  
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