Properties of real networks: degree
distribution
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Nodes with small degrees are most frequent.
The fraction of highly connected nodes decreases, but is not zero.
Look closer: use a logarithmic plot.
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Usage: the degree distribution scales as a power law

R. Albert, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999)
A. Broder et al., Comput. Netw. 33, 309 (1999)



Degree distributions in networks of science

collaborations
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M. E. J. Newman, Phys. Rev. E 64, 016131 (2001)

A.-L. Barabasi et al., cond-mat/0104162 (2001)



Metabolic networks have a power-law

Archaeoglobus f.

P in(k) Ry k_2.2
Pout(k) ~ k™2

C. elegans

102 10°

10’

10?

degree distribution

E. coli

bipartite

nodes: metabolites,
reactions

directed edges,

out: reactant (substrate)

in: product of reaction

H. Jeong et al., Nature 407, 651 (2000)
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P(k) =~ AK™" exp(—/K)

Giot et al. Science 2003 — Drosophila m.
Li et al. Science 2004 — C. elegans

Rual et al. Nature 2005 — human

Stelzl et al. Cell 2005 - human



Gene regulatory networks’ out-degree
distribution long - tailed, in-degree
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Cleaning up degree distributions

Often it is difficult to determine the best fit to the points that make up
a degree distribution.
Methods of data cleanup for decreasing degree distributions:

1. logarithmic binning: bin the k range; use bins of exponentially
Increasing size

2. Display the cumulative degree distribution
P(k>K)=1-P(k <K)

3. Construct a rank-degree plot wherein nodes are ranked in the

decreasing order of degree.

J. Wu et al., Comp. Bio. and Chem. 32, 1 (2008)



Ex. Determine the degree distribution and
cumulative degree distribution of the graph
on the right. Construct its rank-degree plot.

P(k>K)=1-P(k<K)




If the
(noncumulative)
degree
distribution aligns
with a power law
with exponent
a>1,

the cumulative
degree
distribution

will align with a
power law with
exponent a-1.
Does not apply
for a=1!

Probability that a
node has a degree
bigger than x.

P(X >x) ~cx “™

Probability
that node has
degree X.

P(x) =cx™“

v

log(x)



Degree distribution and rank-degree plot

If the
(noncumulative)
degree
distribution aligns
with a power law
with exponent
a>2,

the rank-degree
distribution

will align with a
power law with
exponent o-1.
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J. Wu et al., Comp. Bio. and Chem. 32, 1 (2008)




Cumulative degree distributions of the
Internet

AS level

w P (k> K)~ K213

11111

11111

88888

A5 degree

CCDF: complementary cumulative distribution function, P(k>K)

CAIDA, http://www.caida.org/research/topology/generator


http://www.caida.org/research/topology/generator/

Power grid has exponential degree distribution
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R. Albert, I. Albert, G. L. Nakarado, Phys. Rev. E 69, 025103(R) (2004)



Degree distributions in metabolite and reaction
networks

Construct non-directed projections to metabolite and reaction networks

Rank vs. degree plot, similar to P(k>K).
The degree exponent y=|slope|+1

reaction
modules

5
Demedo

Undirected substrate network  Undirected reaction network

Tanaka, Phys. Rev Lett. 94, 168101 (2005)



Bow-tie structure of the WWW

Network has >200 million webpages, >1.5 billion hyperlinks

Largest strongly connected component (Core) <40% of network
In-component (Origination) ~20%
Out-component (Termination) ~20%

Bow-tie Theory
AltaVista, Compaq, IBM Web Mapping Study
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Broder et al, Comput. Netw. 33, 309 (2000).
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Average path length and average clustering
coefficient in real networks
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Comparison of yeast interaction networks
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Probability

More long paths, but also more short cycles, than in randomized network.
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Paths in Drosophila protein interaction

network
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Distances in Metabolic Networks

Paths defined to connect substrates (reactants) to products, the average is
calculated on the reachable pairs only.
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Relatively small and constant
average distance across organisms H. Jeong et al., Nature 407, 651 (2000)



Clustering-degree relation in metabolic networks
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Distribution of betweenness centrality
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Betweenness centrality (load) distribution of
the power grid

P(I>L)=~
(2500 + L)~

Q: How does the
non-cumulative
distribution

look like in the region
where the cumulative
distribution is almost
horizontal?
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R. Albert, I. Albert, G. L. Nakarado, Phys. Rev. E 69, 025103(R) (2004)



Network Nodes  Edges Neeal Nrand*SD  Zscore | Nteal Nrand:SD  Zscore | Nreal Nrand*SD  Zscore
Gene regulation X Feed- X Bi-fan
(transcription) v forward
Y loop
\4 Z W
Z
E. coli 424 519 40 7+£3 10 203 47+12 13
S. cerevisiae® 685 1,052 § 70 11+4 14 181_2 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
v forward ¥ N parallel
Y loo Y Z
Vv ? 7z W N ¥
7 w
C. eleganst 252 509 125 90+10 3.7 127 55+13 5.3 227 35+ 10 20
Food webs X Three X Bi-
V chain K N parallel
Y Y, Z
\% N ¥
Y/ w
Little Rock 92 984 3219 312050 2.1 7295 2220210 25
Electronic circuits X Feed- X Y Bi-fan ¥ X N\ Bi-
(forward logic chips) Vv forward Y 7 parallel
X loop N ¢
v Z W o
Z
515850 10,383 14,240 | 424 2+2 285 1040 1+1 1200 480 241 335
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) /1 \ node node
feedback feedback
Y€E— Z loop Z W 7 <—W loop
s208 122 189 10 1+£1 9 4 1+1 3.8 5 1+1 5
s420 252 399 20 Lx1 18 10 1£1 10 11 1+1 11
s838% 512 819 40 _1 7] 38 22 T41 20 23 1+1 25
World Wide Web X Feedback X Fully X Uplinked
® with two f N connected / \ mutual
5 mutual ye€e> 7 triad Y<—> 7 dyad
dyads
Z
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3 + 1e2 800 6.8¢6  Sed+de2 15,000 1.2e6  led+2e2 5000




Autoregulation
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Regulators (TFs), blue circles
Genes, red rectangles
Dashed edges mean translation

Feedforward loop:

convergent direct and

indirect regulation; noise

filter

Single input motif:

one TF regulates

several genes; temporal

program

Multi-input motif: combinatorial
regulation



Mixing patterns in networks

Mixing in social networks
assortative: people prefer to associate with others who are like them
disassortative: people prefer to associate with others who are different

Mixing with respect of node degree:
assortative: high degree nodes tend to be connected to high degree
nodes
disassortative: high degree nodes tend to be connected to low degree
nodes
Focus on edge I, denote the excess in-degree of its starting point with j;
and the excess out-degree of its endpoint with k;
Mixing is quantified by the correlation between |, and k; over all |

Zjiki—ZjiZki./N
(ij—(zi:ji )Z/NJOE(Zkf-(Zki )Z/NJ

0.5

Positive correlation - assortative, Negative correlation - disassortative



social {

technological ¢

biclogical 4

Social networks tend to be assortative, technological and biological

network Ly pe size n | assortativity r | error o, | ref.
physics coauthorship undirected L2y 03635 0.0 a
biclogy coauthorship undirected | 1520251 0.127 0.0004 a
mat,hematics coanthorship | undirected 253339 0.120 0.002 b
film actor collaborations undirected 449913 0.208 0.0002 ¢
company directors undirected 7673 0.27 0.004 d
student. relationships und irected 573 —-0.029 0.037 e
email address books directed 16881 0.092 0.004 f
power grd undirected 1941 — U003 0.013 g
Internet, undirected 10697 —-0.189 0.002 h
World-Wide Web directed 269504 —-0.067 0.0002 i
software dependencies directed 3162 -0.016 0.020 j
protein inLeractions undirected 2115 —U.156 0010 K
metabolic netwaork undirected 765 —~0.240 0.007 |
neural network directed 307 —-0.226 0.016 m
marine food web directed 134 —0.263 0.037 n
freshwater food web direct.ed a2 —-0.326 0.031 o

networks tend to be disassortative.

Possible causes of assortativity: group affiliation, attraction of similars;

Possible causes of disassortativity: service relationships (e.g. directories),

representation as simple graphs.

M. E. J. Newman, Phys. Rev. E (2003)



average distance of reachable pairs

!

<k> R FREAY
Network Type n m < S £ e C Cws 7 Ref(s).
Film actors Undirected 443913 25516482 11343 0980 348 23 020 078 0208 1633
Company directars ~ Undirected 7673 55392 1444 0876 460 - 059 088  02% 88,233
Math coauthorship ~ Undirected 253339 96489 392 082 T - 015 03¢ 0120 89,146
Physics coauthorship ~ Undirected 52909 45300 927 0838 619 - 045 056 0363 234,2%
T Biologycoauthorship Undirected 152251 11803064 1583 (0918 492 - 0088 060 0127 234,23
8 Telephonecall graph  Undirected 47000000 80000000 316 21 5,10
Email messages Directed 59812 8300 144 0952 495 15/20 016 103
Email address books ~ Directed 16881 57020 338 (50 52 - 017 013 0092 248
Student dating Undirected 573 477 166 0503 1601 - 0005 0001 -0.029 34
Sexual contacts Undirected 2810 32 197,198
g WWWud.ed Directed 29506 1497135 555 1000 1.7 21/24 011 029 0067 13,28
£ WWW AltaVista Directed 20354046 1466000000 720 0914 1618 21/27 56
£ Ciationnetwork  Directed 78333 6716198 857 3.0/- 280
IE Roget's Thesaurus  Directed 1022 5103 499 097 487 - 013 015 0157 184
Wordcooccurrence  Undirected 460902 16300000 6696 1000 27 0.44 97,116
Internet Undirected 0697 31992 598 1000 331 25 0035 039 0189 66,111
' Power grid Undirected 4941 6504 267 1000 1899 - 010 0080 -0.003 323
B Train routes Undirected 587 19603 6679 1000 216 - 069 0033 2%
T Software packages Directed 1439 1723 120 0998 242 16/14 0070 Q082 -0016 239
£ Software classes Directed 1376 2213 161 1000 540 - 0033 0012 -011% 315
£ Electroniccircuits  Undirected 2097 53248 43¢ 1000 1L05 30 0010 0030 0154 115
Peer-to-peer network  Undirected 880 1296 147 0805 428 21 0012 0011 0366 6282
_ Metbolicnetwork  Undirected 765 3686 968 099 256 22 0090 067 0240 166
¢ Proteininteractions  Undirected 2115 2240 212 0689 680 24 0072 0071 -0136 164
¥ Marnefoodweb  Directed 134 598 446 1000 205 - 016 023 0263 160
2 Freshwater food web  Directed 92 %7 1084 1000 190 - 020 0087 0326 209
Neural network Directed 307 2359 768 0967 397 - 018 028 -0.2%6 323,328

M Newman, Networks (2010)

fraction of nodes in largest (weakly)

connected component



Community structure in networks

 Many real-world networks exhibit community structure (also
called modularity).

* Intuitively modularity can be defined as the existence of
subgraphs that are densely intra-connected but sparsely inter-

connected.




Definitions of a community

Cligues (completely connected subgraphs)
Chain of cliques — adjacent cliques share every node except one

k-clan — diameter (largest path length) is <k
Definitions using the edges inside and outside a presumed community
ki" — edges of node i that stay inside the community

ki°'t — edges of node i that go outside of the community

— Strong community: k"> k.24t for every node i in the community

— Weak community: > k"> >". k.ot where the sum is over nodes in the
community

F. Radicchi et al., PNAS 101, 2658 (2004).



« Find cliques, chains of cliques, 2- and 3-clans, strong and
weak communities in the graph



Community Detecting Algorithms

Most (but not all) methods assume non-overlapping
communities
Two main families of methods:

— Agglomerative (bottom up)

— Divisive (top down)

Several implemented methods

— Cytoscape has several plugins such as MCODE

— CFinder



Agglomerative method: hierarchical clustering

Calculate a weight (connectivity measure) W;; for every pair 1, j of vertices
— Example of weight: number of node-independent paths between i and j.

Start with each node as a separate community

Unite the highest-weight node pair(s)

Calculate the weights between the newly formed community(ies) as
averages over the nodes in the community

Repeat

dendogram




Divisive method: betweenness centrality algorithm

* Betweenness centrality of an edge is the number of shortest paths
between pairs of vertices that run along it

* Algorithm:
- Calculate the betweenness for all edges in the network
- Remove the edge with highest betweenness

- Recalculate the betweenness for all edges atfected by the
removal

— Repeat M.E.J. Newman, Phys. Rev. E 69, 066133, 2004

This algorithm also leads to a dendogram

Q: When is it most meaningful to stop?



Strength of communities
ped (O
To check if a particular division % ﬂ Q Q Q Q
IS meaningful, we can determine
the modularity measure Q, QO
defined as the fraction of edges that fall
within communities, minus the expected

value of the same quantity if edges fall at random without regard for the
community structure.

If Q=0, implies the division gives no more within-community edges than
would be expected by random chance.

Q>0 indicates a significant community structure.

The higher Q, the better the proposed community structure.

M. Girvan and M.E.J. Newman, PNAS 99 (2002).



|_abel propagation

« Each node is initialized with a separate label (is its own community)
» Node labels updated in asynchronous rounds

 Label adoption condition: join the community to which the most adjacent
nodes belong. Ties are broken randomly.

 Stop when each node is in the community where most of its neighbors are.
« No unique solution, but solutions are similar to each other.
 Faster and as efficient as other algorithms

QPR ePa

U.N. Raghavan, R. Albert, S. Kumara PRE 76, 036106 (2007).



Clique percolation

Idea: a community can be
interpreted as a union of cliques
that share nodes

k-clique-community is the union
of all k-cliques that can be
reached from each other through
a series of adjacent k-cliques.

Two k-cliques are adjacent if
they share k-1 nodes.

k-clique-communities can form
meta-nodes in a higher level
network.

Palla et. al., Nature 435,
814-818 (2005)
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