Properties of real networks: degree
distribution

Nodes with small degrees are most frequent.
The fraction of highly connected nodes decreases, but is not zero.
Look closer: use a logarithmic plot.
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Plotting power laws
and exponentials

Note: these are plots of
functions and not degree
distributions
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In- and out-degree distribution of the WWW
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Usage: the degree distribution scales as a power law

R. Albert, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999)
A. Broder et al., Comput. Netw. 33, 309 (1999)

Degree distributions in networks of science
collaborations

Coauthor, HEP  Coauthor, neurosci.
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Power-law degree distributions were found in
diverse networks

Internet, router level  Actor collaboration
nodes: actors
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Metabolic networks have a power-law

degree distribution
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Cleaning up degree distributions

Often it is difficult to determine the best fit to the points that make up
a degree distribution.
Methods of data cleanup:
1. logarithmic binning: bin the k range; use bins of exponentially
increasing size
2. Display the cumulative degree distribution
K
P(k<K)= Y.P(k) or
K=Knin

P(k>K)=1-P(k<K) ;

Ex. Determine the degree distribution and
cumulative degree distribution of the graph
on the right.

If the
(noncumulative)
degree
distribution aligns
with a power law
with exponent
oa>1,

the cumulative
degree
distribution

will align with a
power law with
exponent a-1.
Does not apply
for a=1!

Probability that a
node has a degree
bigger than x.
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Power grid has exponential degree distribution

nodes: generators,
power stations
edges: power lines
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Path length and order in real networks
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Apparent scaling with the network size and average degree - as though
these different networks were members of the same family.

Distribution of betweenness centrality
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K. I. Goh et al., PNAS 99, 12583 (2002)

Betweenness centrality (load) distribution of
the power grid
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Q: How does the
non-cumulative
distribution

look like in the region
where the cumulative
distribution is almost
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networks tend to be disassortative.

Possible causes of assortativity: attraction of similars, group affiliation
Possible cause of disassortativity: service relationships (e.g. directories)

M. E. J. Newman, Phys. Rev. E (2003)

The clustering coefficient does not seem to depend on the network
size and it seems to be proportional with the average degree
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Frequent subgraphs — not universal but common to several networks




