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Ecological Networks

15 September 2009

Types of ecological networks

e Community
— nodes: species
— links: interactions between species
e Population
— nodes: populations of one species
— links: dispersal between populations
¢ Individual
— nodes: individual organisms
— links: genetic relatedness (paternity/maternity)

Community networks

Antagonistic networks

— Food webs

— Host-parasite/parasitoid webs
Mutualistic networks o=
— Plant-seed disperser webs ;.|
— Plant-pollinator webs '

— Plant-ant webs

Ings et al 2009 J Animal Ecol

Food webs

¢ Directed links denote
direction of energy flow
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Guimardes et al. 2007 Curr Biol

Antagonistic vs. Mutualistic Webs

¢ How are these two types of community webs
similar?

¢ Different?

Population

Used to describe patterns of movement
— dispersal

— migration

— genetic relatedness (e.g., through parentage)
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Habitat connectivity paths Population graphs

Fig. 2 Population Graph representing the
genetic relationships among Peninsular (dark
nodes) are Continertal flight nodes} popu-
tioms of L holtil, The di

in node size reflect differences in within
populstion genetic variability, whereas the

cn::.pomnl of genetic variation due 1o the
connecting nodes. Both node sizes and
wdge lengths are projected within a three-
dimensional drawing space.

8 Connective chements identified using keast-cost path and circuit models in a comples landscape, (A) Map of the|
landscape, with resistances and costs for cireuit and least-cost path analyses ranging from | light grav) 1o 100 (dark gray) 1o infininc)
(black). (B) Results from least-con modeling betweoen kabitat patches in lower left and upper right comers of the magp. The valug|
assfgned to cach ccll inddeates the cost accumulated moving along the most cfficicnt possible roune that passes through the cell from|
eme habitat patch 1o the other; brighter arcas indicate cells along the route of bowest cumulative cost. Some habitat cul-de-sacs arc)
highlighted because the most efficicnt path connecting one patch 10 the other via the cul-de-sac has 2 low cost relative 1o most other|
Teaturs in the landscape. For the same reason, some ~cornidons 1o nowhere” are highlighied, such us the one leading ofF of the 1op)
of the map. (C) Current map between the same two habitat patches. Higher current denaities indicate cells with CF NCT passape
probabilivies for random walkers moving from one patch 10 the ether. The map highlights “pinck points.” or critical habitan)
conncetions, between the two patches. Habfar cul-de-sacs have minimal cursent flow because they do not comribute new,|
infependent pathwirys between hobitst patehes,

http://www.tnstate.edu/ganter/John%27s%20Senita.JP

McRae et al. 2008 Ecology Dyer & Nason 2004

Individual Structural properties
(a)
e Degree distribution

* Hierarchy
Path lengths
e Modularity

Mabhaleb cherry paternity study
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Fortuna et al. 2008 Ecol Lett
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Food webs: Degree di_stribution
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Food webs: Degree distribution

* Distribution is correlated with connectance
(C=E/N?)
— uniform distribution & high connectance

— exponential distribution & intermediate
connectance

— power-law & low connectance

* Networks may be built according to available
niches

Dunne et al 2002 PNAS

Food webs: Degree distribution
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Food web degree distribution is also explained by linkage density (z)

z=L/S

Camacho et al. 2002 Phys Rev Lett

Mutualistic webs: Degree distribution
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A truncated power law fits most
mutualistic networks

Greenland plant-pollinator network
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Bascompte & Jordano 2007 Ann Rev Ecol Evo Syst
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Mutualistic webs: Degree distribution

Constraints restrict edges that can be
established

— Morphological mismatch

— Phenological mismatch

Jordano et al. 2003 Ecol Lett

Hierarchy

Perfectly nested Randomly nested

Highly nested

Planis

L mEEm ]

sEEE =
Nestedness N
Perfect 1 - TR
Random 0.55 Animals Animals
Real 0.74

Bascompte et al. 2003 PNAS

Animals

Mutualistic networks: Small-world

Converted 2-mode to 1-mode networks

2-mode & 1-mode properties correlated

Path length increased with network size

— <I>=0.82+0.46logN

— (WWW, <I>=0.35+2.06logN)

For ecological webs, “everything is connected to
everything” witiams et al. 2002

Pollinator Plant
<<I>> 1.7 1.5
<<c>> 0.85 0.84

Olesen et al. 2006 J Theor Bio

Modularity

Module: (aka

compartment,

community) areas within ,{
?c

a network that are
densely linked, separated
by areas that are sparsely 1)
linked ¥
Syndrome: correlated .
traits shaped by similar Lo/
interaction C2
Are modules related to
syndromes?

Olesen et al. 2007 PNAS
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Modularity Stability of ecological networks
12; osdetuts & | etk * The presence of a species (node) or an
b T R S I U interaction (link) is not necessarily constant

— species may go extinct
— new species may colonize
— phenology (timing)

Within-module degree, 2

: il * How might the network change as a result?
0 0.2 0.4 0.6 08 1

Among-module connectivity, ¢

Olesen et al. 2007 PNAS
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Fig. 2. Dependence of food-web stability on N and C. (A) The PSW decreases with increasing N and C, ag
shown by the color coding and the logarithmically spaced level lines. (B) The power law log,(PSW) + a = by}
(red curve) with x = log,,(CM), @ = 0.2090, b =—7.025, and ¢ = 3.138 explains 99.64% of the shown variation)

Gross et al. 2009 Science
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Robustness
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Fig. 3. Dependence of food-web stability on link- slrenglh variability. The former is characterized by PSW and

the latter by CV. Link strength is normalized by (A) Mnedaw(smlmﬂmalmm:ley‘smlonmu:.
Link-strength variability enhances stability in small food webs but has a destabilizing effect in larger webs.

Gross et al. 2009 Science
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Resistance to invasion
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Stability of ecological network

¢ Mutualistic networks are vulnerable to extinction
of high-degree nodes (generalists)

* Food web stability decreases with increasing
network size and connectance

¢ Food web stability is greatest when predators are
neither specialists nor generalists (intermediate
degree)

¢ Invasion success decreases with increasing
connectance

¢ Invasion success higher for generalist invaders

Assembly

* Large disturbances can cause whole
communities to go extinct

e Eventually, species will accumulate to create
another community

* How are communities formed over time?

Mount St. Helens e |
erupted in 1980

Before

Assembly models

¢ Species originate from a ‘regional species
pool’
¢ Each species is introduced in sequence
— random
— optimized
¢ Colonization is successful or not
— Secondary extinctions occur or do not occur

Assembly models

Outcomes differ according to sequence
*same regional species pool, but
different order of introduction yields
different network sizes

o o0 o Too

Drake 1990 J Theor Biol
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Network inference

¢ As for other complex systems, data for
ecological networks are hard to obtain directly
¢ Passive sampling can produce copious data,
for relatively little effort

—insect traps, video surveillance, etc.

Network inference

Passive sampling produces copious
presence/absence or frequency animal data,
over time but NO plant data

Goal of network inference is to use this animal
data to construct the relationships in the
network
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Inference methods

Developed for biochemical networks
No rigorous test of accuracy exists yet
Assumptions of inference method are important!

Boolean: REVEAL (Reverse engineering algorithm)

Polynomial: Jarrah et al. 2007 Adv in Appl Math;
Vera-Licona & Laubenbacher 2008 Ann Zool
Fennici

Bayesian: Yu et al. 2004 Bioinformatics

10



