Network models

Properties common to many large-scale networks, independently of
their origin and function:
1. The degree and betweenness distribution are decreasing
functions, usually power-laws. scale - free
2. The distances scale logaritnmically with the network size

| _logN

- log(k)
3. The clustering coefficient does not seem to depend on the

small world

network size, and is larger than the clustering coefficient of
comparable random graphs

There are two model families proposed to explain these properties:
Small world network models and scale-free network models.



Benchmark 1: regular lattices

One-dimensional lattice: | ~ N, k= const,C = const

Two-dimensional lattice:

\\\ k =6 =const.for inside nodes
\ 6 .
\ \ C= ITh const. for inside nodes

D-dimensional lattice:

The average path-length varies as | ~ NP
Constant degree (coordination number), constant clustering
coefficient.



Benchmark 2: random graph theory

Erdos-Reényi algorithm - Publ. Math. Debrecen 6, 290 (1959)
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° o ° / ® e connecting pairs of nodes
with probability p

p=0 p=0.1 p=0.15

Expected degree distribution:  Prang (K)= Cy_, p*(1-p )"

Expected path length:



Path length and order in real networks
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Real networks have short distances like random graphs yet show
signs of local order.




Small-world networks

Real networks resemble both regular lattices and random graphs —
perhaps they are in between.

Watts-Strogatz model - D. Waltts, S. Strogatz, Nature 393, 440 (1998)

Regular Small-world Random

* lattice with K neighbors
* rewire edges with

probability p
p=0 » p=1
Increasing randomness
3(K-2 log N
|=l,c=( ) e S J ,Cz£
2K 4(K-1) log K N

Is there a regime with small | and large C?



Transition from a lattice to a small world
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There is a broad interval of p over which C(p)=cC(0) but I(p)=I1()



The onset of the small-world behavior
depends on the system size

N L/ d is the dimension of
I(N,p)=~ % f( pKN ) the lattice

constif u<<1 lattice - like
f(u ={ :
Inu/u ifu>>1  random graph - like

The transition point depends on the rewiring probability,
the size of the network and the average degree.

C(p) =C(0)(1-p)’

These results cannot be directly compared to most real networks
because the rewiring probability p is not known.



Degree distribution of a small-world

network
‘ 1 Rewiring does not change the average degree, but
| modifies the degree distribution.

(k) =K

P(k) depends on the rewiring parameter p, but is
always centered around <k>.

Degree distribution similar to that of a random graph, with
exponentially small probability for very highly connected nodes.



Ex. 1

A variant of the Watts-Strogatz model adds random edges to a
regular lattice. Start with a 1D lattice where every node has degree
K. For each existing edge of a node, add an edge with a probability
p. The endpoint of the edge is selected randomly from all other
nodes. How many edges do you expect the graph will have after
edge addition?

Ex. 2
How do you expect the degree distribution will look like after edge
addition? Will it be symmetrical or not?

ki =K+m +n, P(m)=Cy,,p"(1-p)<'*™"
™~
startin / t : n pNK / 2-n
g point  endpoint P(n)=C" 1 1_i
— PNK /2 N N

Minimum: K, peak: K+pK



The scale-free degree distribution
iIndicates a heterogeneous topology

k
log P{K)

New models are needed to reproduce this feature.



We need to uncover the mechanisms
responsible for the scale-free P(k)

* random graphs
» small-world networks
» scale-free random graphs

Static (number of nodes fixed)

Real networks continuously change

* random graphs
Homogeneous
» small-world networks

Scale-free degree distribution - the nodes are not equivalent

We need to model the evolution of networks, not just their topology.



A simple model of network assembly and
evolution (BA model)

Start with a small seed of mynodes and my(m,-1)/2 edges.

* growth: a node and m edges added at every step
- preferential attachment:  TI(kK.) =——

Ki
Z ik,

Price, J. Amer. Soc. Inform. Sci. 27, 292 (1976)
Barabasi and Albert, Science 286, 509 (2000)



General properties of the network

* nr. of nodes: N=m,+t

mo(mo _1)

* nr. of edges: E = +mt
2 10° | \
2E I

* average degree: <k> = W —2m i; 10
 degree distribution: 10°
P(k > Ak N
( ) a0 00 10’ 10° 10

10

Although the network grows, the degree distribution becomes
stationary.



Analytical determination of P(k)

The degree of “old” nodes increases by acquiring new
edges. The probability of an old node with degree k; receiving
a new edge is

m/7(k )=m K S K

Dk 2t

. K = 1 with prob. L
Degree increase: AK; = 2t

0 otherwise

Choices:
follow the increase in the number of nodes with
degree k; (rate equation approach)
follow the increase in time in k; (continuum theory)



Rate equation approach

Change in average number of nodes with degree k

k-1 > k k > k+1
N\
AN, _ (K=D)N, (1) —=kN,(t)
+ 0, « fi
dt ZkN (1) km first node
- i

number of edges

normalization
of new node

P(k) =N (t)/N =limN,(t) 1

(k—=1)P(k —1)t kP(k)‘[\
Zk/P(k)\t\ km

<k>

Plugin: P(k)=m



Degree distribution

The rate equation leads to a recursive relationship between P(k)
and P(k-1)

):(k—l)P(k—l)—kP(k)+

P(k )
( 2 k,m
ﬂp(k—l) for k > m
k+2
P(k) =1
2 for k =m
L m+2
leadsto  P(k)=—mMM+D) -

K(K+1)(k+2)
Stationary power law with an exponent y=23

P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)



Ex. 1

Start from a seed of two nodes connected by an edge. At each step,
add a new node, and connect it by a single edge to a preexisting
node.

Let the probability of selection be directly proportional with the
degree of the “old” node. (Is there an easy way to do this?)

Continue growing the graph until you reach 15 nodes. Describe the
graph (average degree, degree distribution,
clustering coefficient, connectivity, maximum distance).

Ex. 2
How will the properties of the graph change if at each step a new
node and two new edges are added?



Model A

growth pre i nment

(ki) : uniform

& amr(k)=—"
dt m,+t-1

P(K) =S exp(—-)

Characteristic degree scale: m




Model B

ot

preferential attachment

Fixed N, edges connect a randomly selected node with

a preferentially selected node

Q
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P(k) : power law (initially) = Gaussian
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BA algorithm with directed edges

New edges are directed from the new to the old nodes

k' =m fori>m,

t=0
4 " varies
k |n

kln . kln - iin
TR YT P (k)~k™

The degree exponent of the directed scale-free network is 2 !



How do the other network measures
compare with real networks?

Average path length Clustering coefficient
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Average distances smaller in the BA model than in equivalent random graphs.
but not as small as in scale-free random graphs.

Cohen et al, in Handbooks of Graphs and Networks (2003)
Clustering coefficient decreases with network size.

B. Bollobas and O. Riordan, in Handbooks of Graphs and Networks (2003)



Evolving network models

The scale-free model is only a minimal model.
Makes the simplest assumptions:

* linear growth <k> =2m
* proportional preferential attachment TI(k,) < k,

Does not capture
variations in the shape of the degree distribution
variations in the exponent of the power-law region
the size-independent clustering coefficient

Hypothesis: the basic mechanisms need to be augmented
by the incorporation of

addition of edges without new nodes

edge rewiring, removal

node removal

constraints or optimization principles



Preferential attachment in real networks

citation

Kk)

10°

2

neurosci. ' |

k(k)=>Y II(K)
Internet

no pref. attach

----- linear pref. attach

(k) ~ A+k®, <1

actor collab.



Consequences of nonlinear preferential
attachment

(k) ~ A+k*, a<1
A - initial attractiveness

1. Sublinear preferential attachment leads to a stretch-
exponential degree distribution.

P(k)~expl-(k/k,)")
P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)
2. Initial attractiveness only shifts the degree exponent.

A

Vin =2 "‘E directed network, starting point is 2

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)



Mechanisms for preferential attachment

1. Copying mechanism
directed network
select a node and an edge of this node
attach to the endpoint of this edge

2. Walking on a network
directed network
the new node connects to a node, then to every
first, second, ... neighbor of this node

3. Attaching to edges
select an edge
attach to both endpoints of this edge

4. Node duplication
duplicate a node with all its edges
randomly prune edges of new node



Growth constraints and aging cause

cutoffs
10° s
ety (a)
E ]
« Finite lifetime to acquire 2%
= 10°
new edges 2
E 107 F
=] o No aging
§ 10° L © Slow aging
o ¢ < Fast aging
O T o oo 10000

Number of edges
L. A. N. Amaral et al., PNAS 97, 11149 (2000)

- Gradual aging: TJ(k.) ec k, (t—t,)™
y increases with v

S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000)



Additional processes also change the
degree exponent

* mp new edges P(k)~(k+k,)” ko y=1(p,q,m)

* Mg edges rewired

R. Albert, A.-L. Barabasi, Phys. Rev. Lett 85, 5234 (2000)

¢ edges added or removed

1
1+ 2cC

7/in=2+

S. N. Dorogovtseyv, J. F. F. Mendes, Europhys. Lett. 52, 33 (2000)



A model with high clustering coefficient

Each node of the network can be either or inactive.
There are only m active nodes in the network at any instance.
Start with m active, completely connected nodes

At each timestep add a new node (active) that connects to m
active nodes.

Deactivate one active node P, (Kk;) o (a+K, )™

{a)
1.00 —r——

II(k)~a+k

080 -

P(k) ~ k—2—a/m

i B e e g
0.8 S EToeTeT

"m=a=10

clustering coefficient G

10° 10" 10 10° 10*

network size M

K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002)



A deterministic scale-free model

Start with a completely connected graph with five nodes (one
“central” , four peripheral

Make four copies of the graph, keep the original in the center.
Connect the four peripheral nodes of each copy to the central
node of the original.

Make four copies of the graph, again connect peripheral
nodes to the central node.

m 5-clique




A deterministic scale-free model

connect peripheries
to central node

E. Ravasz, A.-L. Barabasi, Phys Rev E 67, 026112 (2003)



Ex. 1
How does the number of nodes increase as a function of time steps?

Ex. 2
How does the degree of the central node increase in time?

Ex. 3
How does the number of edges increase as a function of time steps?

Ex. 4
Can you identify the highest degree nodes?



Properties of the model

Degree distribution

Clustering coefficient
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Hierarchical structure
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Average clustering coefficient of 1

nodes with degree k C(k)=Kk

Also observed in various cellular networks — sign of hierarchical,
modular architecture

E. Ravasz et al., Science 297, 1551 (2002)



Linear growth, linear pref. attachment y=3 Barabasi and Albert, 1999
Monlinear preferential attachment
Ik~ k; no scaling for a=1 Krapivsky, Redner, and Leyvraz, 2000
Asymptotically linear pref. attachment y—2ifa_—=
Mik)~a.k; as ki—o y—o if go—0 Krapivaky, Redner, and Leyvraz, 2000
Initial attractiveness y=2if A=0
Ik )~ A+E; y—= if A—oo Dorogovtsey, Mendes, and Samukhin, 2000a,
2000k
Accelerating growth {k3~r® y=15if A—1
constant initial attractiveness y—2 if #—0 Dorogovisev and Mendes, 2001a
Internal edges with probab. p y=2if
1—p+m
=T m
Fewiring of edges with probab. g y—o= if pog.m—0 Albert and Darabasi, 2000
¢ internal edges y—2 if e—e
or removal of ¢ edges y—m ifc——1 Dorogovtsev and Mendes, 2000c
Gradual aging y—2if po—oo
k)~ ki{i—1;)"" y—= if v—1 Dorogovisev and Mendes, 2000b
-1-C
Multiplicative node fitness (I )
P Pik) i
IT;~m.k; Bianconi and Barabasi, 2001 a
d Dorogovtsev, Mendes, and Samukhin, 2000
Edge inheritance Pl )= k_"ﬁ In(ak,,)
i
Copying with probab. p y=(2—pi{1=p) Kumar er al., 2000a, 2000b
Redirection with probab. » y=14+1Ur Krapivsky and Redner, 2001
Walking with probab. p y=2 for p=p, Vazquez, 2000
Attaching to edges y=3 Dorogovtsev, Mendes, and Samukhin, 2001a
p directed internal edges Yin=2+ph

r[[_kl-,kjj-x[_k:"+jh:|[_k.:?""+_p:._] Tm,,=1+[1—p,‘|'l+;.¢p.-'[1—p]l Erapivsky, Rodgers, and Redner, 2001



Lessons learned from evolving network
models

1. There is no universal exponent characterizing all networks.

2. The origins of the preferential attachment might be system-
dependent.

3. ltis generally true that networks evolve.

4. Modeling real networks:
« identify the processes that play a role
 measure their frequency from real data
« develop dynamical models that capture these

processes



